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SUMMARY: Biomedical developments in the 21st century provide
an unprecedented opportunity to gain a dynamic systems-level and
human-specific understanding of the causes and pathophysiologies
of disease. This understanding is a vital need, in view of continuing
failures in health research, drug discovery, and clinical translation. The
full potential of advanced approaches may not be achieved within a
20th-century conceptual framework dominated by animal models.
Novel technologies are being integrated into environmental health
research and are also applicable to disease research, but these advances
need a new medical research and drug discovery paradigm to gain
maximal benefits. We suggest a new conceptual framework that
repurposes the 21st-century transition underway in toxicology. Human
disease should be conceived as resulting from integrated extrinsic and
intrinsic causes, with research focused on modern human-specific
models to understand disease pathways at multiple biological levels
that are analogous to adverse outcome pathways in toxicology. Systems
biology tools should be used to integrate and interpret data about
disease causation and pathophysiology. Such an approach promises
progress in overcoming the current roadblocks to understanding human
disease and successful drug discovery and translation. A discourse
should begin now to identify and consider the many challenges and
questions that need to be solved.

Introduction

The genomics era opened a door to understanding genetic changes
in susceptibility to diseases, such as single nucleotide polymor-
phisms, gene copy number variations, and gene deletions and inser-
tions (Zerhouni 2014). The subsequent explosion of related “omics”
approaches, including transcriptomics, metabolomics, and proteomics,
have provided more details of how gene regulation and protein produc-
tion are implicated in human disease mechanisms.

However, many human illnesses such as cancers, diabetes, immune
system and neurodegenerative disorders, and respiratory and cardio-
vascular diseases are caused by a complicated interplay between
multiple genetic and environmental factors (Lango and Weedon
2008). The environmental counterpart to genomics is exposomics,
which aims to capture an individual’s lifetime exposure to external
factors (e.g., infections, environmental chemicals, drugs, radiation)
measured via biomarkers in blood, urine, feces, or breath samples.
It provides an opportunity to develop an environmental analog of
genome-wide association studies, similarly top down and hypothesis
free (Lioy and Rappaport 2011).

Another emerging omics tool is epigenomics—the study of changes
in gene activity not attributable to DNA sequence alterations (e.g.,
DNA methylation and chromatin remodeling). Epigenetic changes
including inherited effects and environmentally induced alterations are
implicated in disease causation, and epigenomics is being developed
in disease research. The U.S. National Institutes of Health (NIH)
Roadmap Epigenomics Consortium has provided detailed human epig-
enomic maps to enhance studies of human disease and development
(NIH Roadmap Epigenomics Consortium 2015). Epigenomics is also
being explored in environmental health research with many exposures
being associated with adverse health effects (Shenderov and Midtvedt
2014). These developments provide an unprecedented opportunity to
add a new dimension to the study of human diseases.

The 21st century has seen these and many other pivotal advances
in science and technology: Together, they offer, for the first time, the
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possibility of gaining a dynamic systems-level and human-specific
understanding of the causes and pathophysiologies of disease
(van de Stolpe and Kauffmann 2015). This understanding is a vital
need, in view of current failures (Scannell et al. 2012; Kaitin and
DiMasi 2011) in health research, drug discovery, and clinical transla-
tion (Collins 2011). But these developments in human-specific models
and tools require a new research paradigm to unlock their full poten-
tial. We suggest it is time for a novel, overarching paradigm for medical
research based on adapting and applying the transitional process
underway in toxicology that includes reducing reliance on animal
models, and instead emphasizing human biology and approaches based
on multiscale pathways.

Discussion

In future health research and drug discovery, diseases can be envisaged
as the combined outcome of extrinsic causes that include many
types of exposures, not just chemical exposures, and intrinsic genetic
and epigenetic changes (e.g., Gohlke et al. 2009) that interact at
multiple levels (Figure 1). This combined approach would provide a
more coherent “big picture” by linking environmental sciences with
medical research.

Some of the thinking required to develop a more comprehensive
framework for understanding disease causation has already begun.
Toxicologists and environmental health scientists are already devising
new models that explore synergies between toxic exposures and infec-
tious pathogens in complex diseases, exemplified by interactions
between the hepatitis B virus and aflatoxin in liver cancer (Birnbaum
and Jung 2010).

A new medical research paradigm. To maximize the value of
advanced models and technologies, we believe that a new paradigm
is needed for fundamental research into human diseases and for drug
discovery. The focus should move decisively away from preclinical
animal studies and overly simplistic cell models toward a systems
biology framework to integrate new types of scientific data, such
as from omics, novel human-specific in vitro models, and clinical
studies. Such a framework would help enable a comprehensive and
dynamic understanding of disease causation and pathophysiology.

A concept that systematically describes links between causes of
disease and outcomes could be repurposed from 21st-century toxi-
cology. Since the publication of the U.S. National Research Council
(NRC) report calling for a new paradigm (NRC 2007), a transition
in toxicology has been underway, actively supported by U.S. regula-
tory and research agencies both from environmental and medical
arenas (Collins 2011), as well as by the European Union [Scientific
Committees on Health and Environmental Risks (SCHER) et al.
2013]. The focus in toxicological research turned first to under-
standing toxicity pathways—the normal cellular processes involving
genes, proteins, and small molecules that lead to adverse human
health effects when significantly perturbed by chemical toxicants
(NRC 2007).

The notion of the cell-level toxicity pathways described in the
NRC report (2007) has already been extended to the broader concept
of adverse outcome pathways (AOPs), thereby addressing the sequence
of changes between the molecular initiating event (e.g., a chemical
binds to a cell receptor) and adverse outcomes at the molecular,
cellular, organ, organism, and population levels. An AOP is a standard-
ized way to describe concisely the critical mechanisms of toxic effects
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and is enabling the emergence of a new predictive
toxicology paradigm [Organisation for Economic
Co-operation and Development (OECD) 2012].
This paradigm contrasts with classical toxicology
where so-called apical toxicity end points are
studied in a series of animal tests for different
kinds of toxic effects [e.g., cancer, reproduc-
tive and developmental toxicity, or skin allergy
(sensitization)]. However, this traditional black
box approach sheds little light on the underlying
pathways of toxicity. Rather, it merely presents an
end result that is not easily accessible to deeper
analysis or understanding,

Because of its potential to contribute to
deeper knowledge-based human and environ-
mental health assessments, the AOP concept
is now established as a comprehensive frame-
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Repurposing the AOP concept for human =

health research. We now suggest a novel
step in the evolution of pathway concepts—
the incorporation of the AOP construct into
human health research and drug discovery.
Our proposed disease AOPs, like AOPs in
toxicology, would describe a chain of causally
linked key events causing downstream effects at
several biological levels and provide clear mechanistic rationales for
diagnostic, preventative, and therapeutic interventions in the era of
personalized medicine.

The important commonalities between safety science and health
rescarch, drug discovery, and clinical translation argue for the relevance
of the AOP concept in all these fields. These common features include
) human biological pathways whose response continuum encompasses
efficacy, adaptation, and adversity; ) shared research tools and tech-
nologies (e.g., in vitro models, analytical approaches, computational
modeling); and ¢) the benefits of better-structured and transparent
weight-of-evidence decision-making frameworks, whether for chemical
safety or drug efficacy, that can integrate all the data inputs.

Our proposed AOPs for human diseases are a natural extension
of the AOPs developed in toxicology. The central steps will likely be
similar, although the molecular initiating events will be more varied.
For example, as well as chemical perturbations, infectious and genetic
factors may initiate the disease process. Nevertheless, the principles
and basic biology will be shared between disease AOPs and toxicity
AQPs, and the related information could be integrated into the existing
OECD AOP-KB, including information compiled by several programs
designed to leverage big data such as the NIH Big Data to Knowledge
initiative (https://datascience.nih.gov/bd2k/), as well as information
from existing pathways and bioinformatics databases [e.g., the Kyoto
Encyclopedia of Genes and Genomes (http://www.genome.jp/kegg/)]
and the gene—discase database DisGeNET (http://www.disgenet.org/).

In the context of disease research and drug discovery, our disease
AOP concept would provide a unified framework for describing

an adverse outcome.
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Application of the adverse outcome pathway concept

Figure 1. Integrating data on extrinsic and intrinsic causes of disease using systems biology provides a
more comprehensive understanding of human ilinesses. The adverse outcome pathway (AOP) concept
links exposure, via chemical structure (or structures), the molecular initiating event, and key events, to

relevant pathophysiological pathways and networks across multiple
biological levels and for encompassing extrinsic and intrinsic causes.
Describing these pathways and networks, along with anchoring
molecular initiating events with adverse outcomes, our AOP frame-
work would represent a significant advance over existing concepts,
such as disease mechanisms that are often studied in isolation and
biological pathways or networks (e.g., for cancers) that are invariably
considered only at the molecular or cellular levels.

The disease AOP approach would better exploit advanced
experimental and computational platforms for knowledge discovery,
since the emergence of AOP networks will identify knowledge gaps
and steer investigations accordingly. A commitment to build, curate,
and disseminate a pathways framework within the biomedical research
field would thus provide considerable impetus to base decisions on
mechanistic understanding rather than empirical observation, as has
been the case in toxicology.

Advanced human-specific disease models. In addition to a stra-
tegic and integrated knowledge-based exploitation of omics tools and
the introduction of the AOP concept, we further propose a strong
focus on human-specific models. Advanced human-specific cell- and
tissue-based models (e.g., Singh et al. 2011) and next-generation
tools are making possible a fuller, dynamic comprehension of disease
pathophysiology and a more reliable and cost-effective drug discovery
process (Muotri 2015).

Human-induced pluripotent stem cell technology offers unique
access to healthy as well as patient- and disease-specific in vitro cell
models (Bellin et al. 2012). This could help achieve the holy grail of
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relating disease genotype to phenotype, for example by correlating
individual genetic variants with gene expression patterns, disease path-
ways, and associated outcomes. Models derived from human stem
cells have been developed to enhance research into autism spectrum
disorders (Marchetto et al. 2010), cardiovascular disease (Zanella
et al. 2014), Alzheimer’s disease (Choi et al. 2014), and many other
illnesses. In some instances, insights about molecular disease mecha-
nisms and drug effects have emerged from human stem cell systems
that were previously missed in nonhuman models (Marchetto et al.
2010; Mitne-Neto et al. 2011).

Human organ-on-a-chip culture devices, combining microfluidics
with two- and three-dimensional cell culture, aim to reproduce key
architectural, physical, functional, and biochemical features of human
organs 77 vitro. Within miniature cell chambers, highly controlled cell
culture allows in vivo-like interactions between multiple cell types
(van de Stolpe and Kauffmann 2015). Identifying and independently
varying critical cellular and molecular disease contributors is difficult
in animal models, but in microfluidic systems, molecular factors and
different cell types can be varied independently and simultaneous
measurements of real-time system-level responses become practical
(Benam et al. 2015; van de Stolpe and den Toonder 2013). There
are already prototype microfluidic models for diseases of the heart,
lung, intestine, liver, and kidney and of the vascular, endocrine,
musculoskeletal, nervous system, and more (Benam et al. 2015).

Key information is also provided by studies of ex vivo biopsied
or postmortem human tissue (Zerhouni 2014; Beach 2013) using
powerful analytical tools such as next-generation sequencing (Twine
et al. 2011), and novel multiplexed fluorescent in situ cell and tissue
visualization technologies for proteins, DNA, and RNA molecules
(Weibrecht et al. 2013) using digital pathology platforms that enable
quantification of complex staining patterns. In addition, advanced
mass spectrometry techniques can provide high-throughput, compre-
hensive, and quantitative information about proteins in clinical cell
(e.g., tumor biopsies) and biofluid samples (e.g., urine, saliva, or
plasma) at high sensitivity (Jimenez and Verheul 2014). Interpreting
omics data from healthy and diseased tissues using bioinformatics
tools has revealed associations with multiple pathways important in
(patho)physiology (Andreev et al. 2012), including information on
the status and dynamics of regulatory gene networks and pathways
(Tonevitsky et al. 2013). Access to biobanks with well-characterized
human tissues, cells, and biofluids from phenotyped patients and
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controls will also be important. Finally, advanced clinical studies to
obtain in vivo human information (the true gold standard model) also
have much to offer. They may provide new insights into pathology
(Rosén et al. 2013; Ledford 2008) and anchor research models of all
kinds to real-world illnesses in humans (Koren et al. 2007).

Multidisciplinary data should be integrated and interpreted by
means of systems biology tools (van der Sijde et al. 2014). New
bioinformatics approaches become even more powerful with the
incorporation of cell biology data, and systems biology offers ways
to integrate computational and experimental methods at multiple
scales from biochemistry through to individual levels (Figure 2).
Development and adaptation of integrated software platforms
are central to efficient and effective use of data and for predictive
computational modeling (Ghosh et al. 2011).

Toward a new research paradigm. The key driver for a new para-
digm in health research is the slow progress scientists have made in
understanding human disease. This has resulted in a lack of success in
drug discovery and translation of laboratory findings into effective ther-
apies and in the spiraling investment of resources wasted by late-stage
drug failures (Kaitin and DiMasi 2011). There are many reasons for
failures in translation to the clinic, but the reliance on animal models,
which are limited by species and strain differences and yet continue to
dominate decisions throughout the drug discovery and development
process, is a key issue which urgently needs to be addressed (Collins
2011; Langley 2014; Pound and Bracken 2014; Seok et al. 2013). The
second driver is the emergence of novel scientific tools and models that
enable, for the first time, advanced approaches that could revolutionize
our understanding and treatment of human disease (Collins 2011).

The transformational potential of 21st-century scientific advances
will not be realized if they are simply added to a growing list of existing
methods within an outdated 20th-century paradigm of health research
and drug discovery. Medical research is now poised to capitalize on the
same paradigm shift that is transforming toxicological science, in terms
of the overarching framework of research and how data are interpreted
and integrated. Toxicology increasingly emphasizes improving predic-
tion by human biology-based models and by focusing on AOPs to
exploit systems biology thinking and advanced mathematical modeling.
Recognition of the need to change direction to a human-based, multi-
scale—pathway-focused paradigm is critical, as is confidence in the new
approaches. Recognition and confidence are increasingly reflected in
major programs such as the U.S. funding commitment in the 2016
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Figure 2. Diagram showing different pathways concepts, including the well-characterized adverse outcome pathway (AOP) for chemically induced skin allergy,
from chemical structure through molecular initiating event, key events and adverse outcome. DCs, dendritic cells; QSAR, quantitative structure—activity relation-
ships. Reprinted from Encyclopedia of Toxicology, Vol. 1, 3rd ed. Adverse outcome pathways: development and use in toxicology, pp. 95-99, 2014, with permission

from Elsevier.
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budget for a precision medicine initiative involving the omics and a
million research volunteers (Collins and Varmus 2015) and, in toxicology,
the OECD’s AOP Development Programme (OECD 2013).

Conclusions

Our proposed new research paradigm, adapted from 21st-century

toxicology, would involve the following aspects:

* Developing a big picture of human diseases, integrating extrinsic and
intrinsic causes, and linking environmental sciences with medical
research using systems biology.

¢ Introducing a disease AOP concept, analogous to toxicity AOPs,
with the intention of providing a unified framework for describing
relevant pathophysiology pathways and networks across multiple
biological levels.

¢ Creating a strong focus on advanced human-specific research
(in vitro, ex vivo, in vivo, and in silico) in place of empirical, animal-
based studies.

To accomplish the goals outlined in this article, many questions
will need to be considered:

* To what extent can existing and emerging human models and tools
be applied to replace animal studies?

* Where are the knowledge and technology gaps?

* How can big data be synthesized into actionable knowledge?

* Can computational models effectively bridge the in vitro—in vivo
divide?

* How easy will it be to optimize the derivation of enriched populations
of disease-relevant cells from human-induced pluripotent stem cells?

In summary, a new coherent roadmap for medical research promises
progress in several areas:

* Revealing common disease pathways.

* Discovering new and multiple human drug targets.

* Improving translation.

* Reducing late-stage drug attrition.

* Facilitating drug repurposing.

* Contributing to the development of personalized medicine.

* Achieving more reliable and valid data in faster time frames and at
lower costs.

It will take a formidable effort and redeployment of funds (e.g., away
from efforts to improve animal models) to achieve the new paradigm
of a multiscale—pathways-based, human-centered concept for disease
research. We hope this article will help launch a serious discourse among
researchers, policymakers, regulatory agencies, and research-funding
organizations around the world and encourage those who have already
begun to think along these lines. Unless rethinking of the 20th-century
research paradigm starts now, benefits to patients from 21st-century
scientific and technological advances will be unduly delayed.
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